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a b s t r a c t

With the pervasive use of location-aware devices and rapid development of location sensing technol-
ogy, trajectory data has been generated in diverse fields. How to store and manage these large amounts
of data is a non-trivial task and thus trajectory compression has gained increasing attention in recent
years. As traditional compression algorithms often treat trajectories as sequences of lines in geometric
space, the global statistics and the semantics embedded in trajectories are not well considered. In this
paper, inspired by the powerful concept of synchronization, we introduce a new semantic trajectory
compression approach to yield multi-resolution trajectory abstractions with semantic enrichment.
The basic idea is to introduce a multi-resolution synchronization-based clustering model to produce
semantic regions of interest (ROIs) in a hierarchical way. Specifically, by imposing constraints on points
with semantic information in the interaction model, all neighboring points with similar semantics will
group together automatically. Afterwards, each trajectory is compressed as a sequence of semantic
ROIs and is further represented as a hierarchical ROI network. Moreover, we further extend our model
on the data stream setting. The extensive experiments on synthetic data and four real-world data sets
demonstrate the effectiveness and efficiency of our proposed model.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, more and more trajectory data has been gen-
erated in diverse fields. The massive amount of information often
contains a variety of patterns, and plays an important role in
a wide range of applications, such as location recommendation,
onboard diagnostics and movement behavior analysis. However,
how to store and manage these massive amounts of data is a
non-trivial task. To tackle this, trajectory compression has at-
tracted a lot of attention in recent years. Up to now, many
trajectory compression algorithms have been proposed, which
can be broadly divided into two categories: traditional com-
pression in free space [1–5] and compression with contextual
constraints [6–12]. The philosophy of the former class is to use
fewer lines or paths to replace the original lines or paths of every
trajectory to reduce the information redundancy. Although those
methods often have a good compression ratio, the real-world
context often cannot be well preserved. For instance, in route-
based recommender systems, the recommended route should
be constrained by actual roads, instead of simple unconstrained
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lines. Meanwhile, the compressed points (or lines) should cover
the important places of interest (POIs) of cities, e.g., museums,
parks, monuments, attractions, restaurants, accommodations and
shops, instead of only taking account of the points extracted from
raw trajectories [13].

To tackle this issue, a lot of semantic trajectory compres-
sion algorithms have been proposed in recent years. Semantic
trajectory is a concept that the raw trajectory is enriched with
related contextual data [14,15]. The examples include networks
extracted from urban geographic infrastructure elements such as
streets, points of interest, or activities beyond pure geometry,
such as walking, non-walking segments [9] and stay points [12].
Therefore, the basic idea of compressing semantic trajectories
is to consider the trajectory with enriched contextual informa-
tion, and then apply compression techniques to it [13]. However,
the performance of these methods is highly dependent on the
number of accessible priors. E.g., if the roadmap or POI network
is sparse or has a lot of missing values, the representation of
compressed trajectories would be largely influenced.

In this paper, we introduce a multi-resolution synchronization-
based clustering model, CascadeSync, to provide a new perspec-
tive to compress trajectory and preserve the semantic informa-
tion in compressed trajectories. Moreover, we introduce a simple
yet effective way for trajectory compression and retrieval in a
stream setting. To evaluate the performance of the proposed
method, we conduct experiments on both synthetic data and four
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Fig. 1. Illustration of semantic trajectory compression via CascadeSync. (a) The 80 trajectories with raw GPS points, and the 30 blue triangles indicate the GPS points
with semantic information. (b) The resulting ROIs via constrained synchronization-based clustering. Here each white circle indicates one cluster (i.e., normal ROI),
and each blue triangle means one semantic ROI. (c) Trajectory data is finally represented as an ROI network. (d) The normal ROI and semantic ROI.

real-world data sets, and compare the performance to several
baselines. We will see that our model has several desirable
properties, but let us first illustrate its basic idea.

1.1. Basic idea

Unlike traditional methods which extract key points in each
trajectory independently, CascadeSync is a model that aims to
find important regions that allow representing all raw trajectory
points (i.e., global structure information). These regions of in-
terest, denoted as ROIs, are formed by aggregating surrounding
data points based on a synchronization-based clustering model.
Due to the powerful concept of synchronization, these GPS points
in trajectory data can be clustered from fine-grained to coarse-
grained levels. With the derived ROIs, the trajectory data can be
represented as a set of multi-resolution ROI-based networks. In
addition, if some domain knowledge (e.g., the contextual informa-
tion for some GPS points) is available, it can be further integrated
into the synchronization-based clustering process. For example,
assume that there are a bunch of points with semantic infor-
mation, such as landmark building, road intersections or places
where big events occurred. The positions of those important
points or regions will be fixed during the synchronization-based
clustering process, and they attract neighboring points or regions
to group together to form semantic clusters, which are referred to
as semantic ROIs. In this way, both global structure information
of GPS points and semantic information are well integrated into
our compression result.

For illustration, Fig. 1 shows a toy example on a synthetic
data set with 80 trajectories. For all these trajectories, suppose
that there are thirty points with semantic information, which are
indicated as blue triangles in Fig. 1(a). For compression, during
the clustering process, these points with semantic information
are fixed, and all points (including the fixed points) mutually in-
teracted until all similar points group (i.e., synchronize) together
finally. Since the points with semantic information are fixed,
during the synchronization process, they attract its neighboring
GPS points to group together and thus form semantic regions

of interest. For other GPS points, if the neighboring points have
no fixed points with semantic information, they are naturally
grouped together to form ROIs (without semantic information)
(Fig. 1(b)). Fig. 1(d) further illustrates the two resulting ROIs:
normal ROI and semantic ROI. Afterwards, with these ROIs, each
trajectory can be represented as a sequence of ROIs, and the
whole trajectory data is further compressed as an ROI network
(Fig. 1(c)). With the ROI network, the global trajectory moving
pattern can be well preserved. In addition, due to the desirable
properties of synchronization-based clustering, these ROIs, can be
further compressed into a higher level and yield a more compact
trajectory representation. Building upon the multi-resolution ROI
network representation, the global statistics of trajectory data
can be extracted and the downstream trajectory mining tasks
can be facilitated (e.g., trajectory clustering, classification, pattern
mining and outlier detection [13]).

1.2. Contributions

The main contributions of this work are summarized as fol-
lows.

• An intuitive Semantic Trajectory Compression Model. We
propose a semantic trajectory compression model by con-
sidering both global trajectory structure information and
available contextual information. This method provides a
new perspective to compress trajectories with semantics.

• Multi-resolution Synchronization-based Representation.
Inspired by the powerful concept of synchronization, Cas-
cadeSync allows offering a promising way to compress
trajectory data. More importantly, it supports a multi-
resolution compression and the semantic information can
be naturally preserved.

• Online Trajectory Compression. An online model is further
proposed to support efficient compression and retrieval on
trajectory streams, where two operations: Merge and Split
are defined on ROI networks.
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• High Performance. The empirical experiments show that
our proposed method has a strong representative capa-
bility and is thousands of times faster than the baseline
algorithms. Besides, the desirable semantic information is
also well preserved, and a global profile of urban traffic is
established.

The rest of paper is organized as follows. Section 2 discusses
related work. Section 3 gives some notations and the problem
statement. Section 4 elaborates CascadeSync algorithm. Section 5
extends the proposed compression algorithm to stream data.
Section 6 presents our extensive experiments. Finally, we con-
clude our work and discuss future works in Section 7.

2. Related work

According to the comprehensive review of Renso et al. [13],
the objectives of trajectory compressions are: (1) to reduce the
size of a data set, (2) to ensure that the reduced data set can be
computed efficiently, and (3) to ensure that a trajectory from the
reduced data set should not deviate from the original one by more
than a given threshold. During the past decade, many trajectory
compression algorithms have been proposed. In the following, we
will give some major works in the existing literature. In addition,
we also discuss the works of synchronization-based clustering.

2.1. Traditional trajectory compression

As a reaction to increasing volumes of trajectory data, a lot
of trajectory compression technologies have been developed. Sun
et al. [16] give a comprehensive overview of trajectory compres-
sion algorithms. The early work treats trajectories as sequences
of straight lines, so that the compression is cast to a line simpli-
fication problem in pure geometric space. Douglas–Peucker algo-
rithm [1] is a classical model, which recursively selects the point
whose perpendicular distance is greater than a given error bound
until all reserved points meet the condition. Some works [17,18]
replace the metric from spatial error to Synchronized Euclidean
Distance (SED) to consider the temporal information. For exam-
ple, Meratnia and Rolf propose the Top-Down Time Ratio (TD-TR)
and Open Window Time Ratio (OPW-TR) algorithms with SED
metric. Initially, it defines a line segment between the first and
the third data point. If the SED from each internal point to the
segment is not greater than a given threshold, the algorithm
moves one position forward in the sequence. When the threshold
is exceeded, the data point that causes the threshold excess is
defined as the end position of the current segment, and use the
next point as a new start. The process will terminate until all
points are handled.

Moreover, Potamias et al. [18] propose two algorithms named
Thresholds and STTrace, which are appropriate for online trajec-
tory data compression. The algorithms use the coordinates, speed,
and orientation of the current position to calculate a safe area
where the next position might be located. If the next incoming
position lies in the calculated safe area, it can be ignored. Lee
et al. [19] and Soares et al. [20] utilize the concept of mini-
mal description length (MDL) to guide the compression process,
which aims to find an optimal trade-off between conciseness and
preciseness. The Spatial QUalIty Simplification Heuristic (SQUISH)
is a method based on the priority queue data structure [21]. Its
basic idea is to prioritize the most important points in a trajectory
stream. It uses local optimization to select the best subset of
points and permanently remove redundant or insignificant points
from the original GPS trajectory. Afterwards, Muckell et al. [3]
present a new version of SQUISH, called SQUISH-E (Spatial QUal-
Ity Simplification Heuristic-Extended), which has the flexibility of
tuning compression ratio and error.

In addition, some methods are proposed to compress trajec-
tory in an online setting. For instance, Dead Reckoning algorithm
estimates the successor point on the go with the current point
and its velocity [2]. Liu et al. [4] present the Bounded Quadrant
System (BQS) to select points by calculating distance between
the new point and a special line maintained online. Lin et al. [5]
propose a one-pass strategy that process each point in a trajec-
tory only once to pursue an error bound. However, those online
algorithms only output a reduced trajectory data set, which still
do not fill the gap between the disordered raw data and the time-
aware queries for locations and trajectories. More importantly,
these methods are not applicable when introducing constraints
such as roadmaps or POI networks in the real world. Although
those algorithms can be served as downsampling methods for
portable mobile devices to reduce the transmitting cost, they are
not suitable for establishing a holistic urban movement profile.

2.2. Semantic trajectory compression

As mentioned by Parent et al. [14], most current application
analyses require additional contextual information in the appli-
cation context. For example, interpreting trajectories of persons
within a city requires some knowledge about the features of
the city (e.g., map, places of interest). Building upon the city
information, spatiotemporal coordinates can be replaced with
street and crossing names, or with names of places of interest,
such as shops, restaurants, and museums. As a result, the raw
trajectories can be replaced by a representation with enriched
contextual semantics of the city.

To date, many approaches are proposed to compress trajecto-
ries with a variety of contextual information. Schmid et al. [6,7]
introduce a novel method called Semantic Trajectory Compres-
sion (STC) to replace raw trajectory data with the nodes and
edges in road networks enriched with urban transportation in-
formation, by using the techniques like navigation research (map
matching, place identification) and spatial cognition (wayfinding,
generation of directions). However, STC relies on the availability
of transport network data for compression, which does not cover
every type of human movement (e.g., hiking in national parks).
Following the same idea, Liu et al. [8] further propose velocity-
based and beacon-based trajectory symbolization, to represent
all trajectories using fewer reference points at the same time.
Some methods also consider the behavior patterns contained in
trajectories. For example, Chen et al. [9] and Zheng et al. [22]
partition a trajectory into walking and non-walking segments,
using speed, acceleration, and speed change rate, to maintain
both the skeleton and semantic meanings of trajectories. Af-
terwards, they refine the non-walking segments into segments
characterized by other transportation modes: bicycle, bus, and
driving. They use a combination of techniques, from supervised
learning to decision tree inference, and add a postprocessing step
to improve the accuracy of the segmentation. Moreover, some
works argue that the direction of moving object is important
to be preserved [23,24]. Instead of only preserving the positions
of trajectories, they argue that the direction information of tra-
jectories is more important for characterizing the structure of
trajectory. Another notable work is proposed by Song et al. [10],
which presents a framework PRESS to split trajectory representa-
tion into spatial representation and temporal representation, and
then a hybrid spatial compression (HSC) algorithm and an error-
bounded temporal compression (BTC) algorithm are proposed,
respectively. Besides, there are lots of works emphasizing every
point in trajectories should be projected onto roads when mining
the trajectory of vehicles generated in urban network, a.k.a. Map-
matching [25–28]. For more details, please refer to the excellent
surveys [13,29,30]. However, for most existing approaches, they
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assume that the semantic information is completely available as
prior knowledge. Once the semantic prior knowledge is missing,
for example, the roadmap is incomplete, the performance will be
greatly affected.

2.3. Synchronization-based clustering

Our work is also highly related to synchronization-based data
mining [31]. Synchronization phenomena is prevalent in physi-
cal, biological, chemical, and social systems. It comes from the
example of typical synchronous flashing of swarms of fireflies
in South Asia forests [32]. In the beginning, some fireflies start
emitting flashes of light incoherently, but after some time all
the fireflies are flashing with the common rhythm with mutual
influence. Currently, many synchronization-based models have
been proposed in diverse fields [31,33–41]. The extensive Ku-
ramoto model [42,43] is one of the most successful approaches
to explore synchronization phenomena. Seliger et al. [33] discuss
mechanisms of learning and plasticity in networks of phase oscil-
lators through a generalized Kuramoto model. Arenas et al. [34]
apply the Kuramoto model for network analysis, and study the
relationship between topological scales and dynamic time scales
in complex networks. This analysis provides a useful connec-
tion between synchronization dynamics, network topology, and
spectral graph analysis. In bioinformatics, Kim et al. [44] pro-
pose a strategy to find groups of genes by analyzing the cell
cycle specific gene expression with a modified Kuramoto model.
Similarly, the co-clusters with correlated genes and conditions
are yielded based on two-sided interaction model [40]. Recently,
many synchronization-based clustering algorithms [31,35,37,39,
45] have been proposed by reformulating the Kuramoto model.
For example, Shao et al. [31] propose a new synchronization-
based clustering algorithm by introducing local synchroniza-
tion and minimum description length principle. In contrast to
other algorithms, synchronization-based clustering algorithms
have many benefits, which allow identifying high-quality clusters
and are robust to noisy objects or outliers.

The GPS-based trajectory data is represented by a set of points.
It is not a good way to mine trajectory data on these points
directly, for different trajectories often have varying lengths and
different sampling rates. One intuitive way is to group all these
points into many regions with semantics. However, traditional
clustering methods are not suitable for this task. For instance,
k-means style clustering algorithms need to select the cluster
number k explicitly, and the resulting clusters are not evenly dis-
tributed, hence the representative error cannot be bounded in ζ .
Comparing to k-means based clustering algorithms, synchroniza-
tion clustering has the advantage that it can automatically pro-
duce clusters with a meaningful number. Specifically, the number
of clusters is affected by the interaction range ϵ: the number of
clusters will decrease with the increase of ϵ. Besides, determining
an interaction range is far more intuitive than giving a correct
number of clusters. The former can control the clustering process,
which motivates us to use ϵ as an indicator for the error bound
ζ in a certain situation, i.e., when almost all the points have
the representative error smaller than ζ . In contrast, if we use k-
means as clustering method for trajectory compression, we can
only perform the clustering globally, which is not conducive to
controlling the compression process. Another branch of clustering
models is those based on DBSCAN [46] or OPTICS [47], which
search clusters by looking for the dense area. However, the result
clusters are in arbitrary shape, which may violate the real-world
region constrains and may lead to meaningless clusters in our
compression situation. For example, one main road in the city
might be detected as a single cluster, which is not appropriate
for trajectory compression. By contrast, synchronization-based

Table 1
Notations.
Notation Description

T Trajectory dataset, each Ti ∈ T is a trajectory, defined in (1).
P GPS point set, each Pi ∈ P is a GPS point.
ROI ROI set, each ROI i ∈ ROI is a node on ROI network.
E Edge set, each ei ∈ E is an edge of ROI network.
ζ The representative error bound, defined in (2).
ϵ The radius of the interaction range, defined in (3).

clustering approaches tend to produce evenly distributed clus-
ters, which will render meaningful clusters as the compression
point on the map. Therefore, the trajectory can be intuitively and
reasonably presented by those cluster centers.

Furthermore, synchronization-based clustering algorithms
provide a more intuitive way to compress trajectory points since
all these points are synchronized together driven by local inter-
action. Unlike traditional clustering algorithms, synchronization-
based clustering approaches view each data object as a phase
oscillator and simulate the dynamical behaviors of the objects
over time. Through the interaction with similar objects, the phase
of an object gradually aligns with its adjacent objects, resulting in
a non-linear object movement driven by the local cluster struc-
ture. Finally, the objects in a cluster are synchronized together
and have the same phase. Therefore, synchronization-based clus-
ters can identify clusters driven by the local data structure, and
more importantly, the global data structure can be well-preserved
with synchronized objects.

Motivated by those works, in this paper, we view trajec-
tory compression from a dynamic perspective and extract multi-
resolution trajectory data abstractions based on synchronization
principle. To the best of our knowledge, we are the first to apply
the concept of synchronization for data compression.

3. Preliminary

In this section, we will introduce the semantic trajectory com-
pression problem. Before that, we first give some notations used
in the following sections, which are listed in Table 1.

3.1. Trajectory and trajectory compression

The most common data format of trajectories, usually col-
lected by GPS devices, are the temporal sequence of latitude/
longitude coordinates as follows.

T = {⟨s1, s2, . . . , sn⟩ |si = (Pi, ti)}, (1)

where the Pi = (xi, yi) is a (latitude, longitude) pair representing a
GPS coordinate, representing a sample point on the map. ti is the
time stamp of a point Pi, and n is the length of the trajectory T .

The traditional trajectory compression problem is to use fewer
points to replace the original points of each trajectory while most
trajectory information needs to be preserved. Given a trajectory T ,
the compressed trajectory is denoted as T ′

=
{⟨
P ′

1, P
′

2, . . . , P
′
m

⟩
; ,

m ≤ n}. In order to make a compromise between compression
ratio and representative error, we introduce the representative
error bound to guide the compression.

Definition 3.1 (Representative Error Bound). Given a trajectory T
and a compression algorithm A that produces the corresponding
compressed trajectory T ′, the algorithm A is bounded by the error
bound ζ , if for each Pi ∈ T , there exists a point P ′

j ∈ T ′ with:

distance
(
Pi,L(P ′

j , P
′

j+1)
)

≤ ζ , (2)

where L(P ′

j , P
′

j+1) is the straight line that passes the two points
(P ′

j , P
′

j+1).
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Fig. 2. Illustration of the representative error and the error bound. (a) Tradi-
tional representation, where the solid line sequence ⟨Pi−1, Pi, Pi+1⟩ is the original
trajectory, and the dash line sequence ⟨Pi−1, Pi+1⟩ is the compressed trajectory.
(b) Representation using ROI, where sequence ⟨ROIu, ROIv⟩ is the compressed
trajectory. There is at least one ROI existing in ζ -radius circle of each raw point,
so that Eq. (2) can be satisfied).

The distance between the point Pi and L is shown as dash line
with light blue in Fig. 2(a). Note that most trajectory compression
algorithms are proposed to be bounded by a given threshold ζ .

3.2. Semantic region of interest

Precisely modeling location identities in trajectories data is of
significant importance in location-based service. In many applica-
tions, locations represented by GPS coordinates are not adequate
to support downstream mining tasks. To extract patterns from
human mobility, we require the locations representing high-
level activities to describe the profiles of moving objects. After
being enriched with domain knowledge, a trajectory can be trans-
formed to sequences such as residence, bus station, and school. As
a result, the queries referring to the semantic meanings such as
‘‘return objects that stop at the building for half an hour and pass
the bus station around eight o’clock’’ are naturally supported.

Up to now, there are many algorithms devoted to automati-
cally detecting and inferring the significant places for trajectory
pattern mining [15,48,49], recommendation [50–52] and route
classification [53,54]. However, the basic idea of these works is
to simply split the map into multiple grids or group the raw GPS
points to clusters, which fail to associate the real-world semantics
with the detected places. As mentioned in [7], the semantics
should be explicitly defined as a priori. In their work, important
urban infrastructures such as hotels, touristic places, and major
intersections are defined as nodes and all nodes are further form a
network. We refer to those nodes as semantic ROIs. By clustering
and map-matching, all raw GPS points are associated with those
semantic ROIs.

However, it is noteworthy that the capability of representation
and performance of compression highly depend on the quality of
predetermined semantic ROIs. When semantic ROIs are insuffi-
cient to cover each corner of the city, i.e., if the prior knowledge
is sparse (or missing), a profound representative error would be
introduced into the compressed results. That is the motivation
of our work, where we aim to introduce a new perspective to
compress trajectory with limited semantic information.

3.3. Semantic trajectory compression with ROIs

As aforementioned, trajectory compression should make use
of real-world semantic information, such as roadmap and POI
network, to yield more meaningful compression results. Without
loss of generality, the semantic information can be expressed
by the ROIs, which are a set of fixed regions on the map with
specific semantics. The task of semantic trajectory compression
is to find an algorithm A, which is error bounded by ζ . For each

raw trajectory T ∈ T , apply A to generate a sequence of ROIs to
represent T as T ′

= {⟨ROI1, ROI2, . . . , ROIm⟩ ,m ≤ n}.
In order to satisfy the error bound condition defined in (2),

the representation radius, i.e., the distance between point Pi and
corresponding ROI, should be bounded in ζ . In other words, for
each point there should be at least one ROI in its ζ -radius circle.
Fig. 2(b) illustrates a trajectory segment ⟨Pi − 1, Pi, Pi + 1⟩ and its
compressed version ⟨ROIu, ROIv⟩.

4. CascadeSync: A multi-resolution clustering model for tra-
jectory compression

In this section, we present CascadeSync, a new semantic tra-
jectory compression framework built upon multi-resolution con-
strained synchronization-based clustering.

4.1. Region of interest detection via synchronization-based cluster-
ing

Typically, a synchronization-based clustering algorithm needs
three definitions to simulate a dynamic clustering process: First, a
parameter ϵ specifying the interaction range among objects, sec-
ond, the interaction model for clustering, and finally, a stopping
criterion to terminate dynamic clustering. Our approach follows
and extends the synchronization-based clustering underlying the
algorithm Sync, presented and discussed in full detail in [55].

Definition 4.1 (ϵ-Range Neighborhood). Given a GPS data set P ⊂

ℜ
n, the ϵ-range neighborhood of a GPS point p ∈ P , denoted as

Nϵ(p), is defined as:

Nϵ(p) = {q
⏐⏐dist(p, q) ≤ ϵ}, (3)

where dist(p, q) is a metric distance function. Euclidean distance
is used in this study.

Definition 4.2 (Interaction Model). Let p be a GPS point on the
map. With an ϵ-range neighborhood interaction, the dynamics of
the value of the point p is defined as:

p(t + 1) = p(t) +
1

|Nϵ(p)|
·

∑
q∈Nϵ (p)

sin(q(t) − p(t)), (4)

where sin(x) is the coupling function, applying to every dimension
of vector x. p(t + 1) is the renewal position of p(t) during the
dynamic clustering, t ∈ {0, . . . , T } denotes the iteration step.
Note all dimensions are normalized to [0, π/2].

Definition 4.3 (Cluster Order Parameter). The cluster order param-
eter r is used to terminate the dynamic clustering by investigating
the degree of local synchronization, which is defined as:

r(t) =
1
N

N∑
i=1

1
|Nϵ(p(t))|

∑
q∈Nϵ (p)

e−∥q(t)−p(t)∥ (5)

The dynamic clustering terminates when r(t) converges, which
indicates local phase coherence. At this moment, all cluster points
have the same location.

For synchronization-based dynamic clustering, each point is
viewed as a phase oscillator and has its own phase (feature
vector) at the beginning. As time evolves, each point interacts
with its ϵ-range neighborhood according to the interaction model
(Eq. (4)). As illustrated in Fig. 3(a), each point interacts with
its neighborhood points, and finally all locally similar points are
synchronized together and form clusters. For example, the point
pli is influenced by its neighbors and finally forms ROI ly together
with other points in the same region. Meanwhile, since potential
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Fig. 3. Illustration of CascadeSync algorithm. The blue triangles are semantic ROIs, which stay fixed throughout the interaction process. The dots on layer l = 0 are
raw GPS points, and the circles on layer l ≥ 1 are ROIs generated by points on the last layer.

outliers do not interact with other points during the dynamic
clustering, they maintain their original values and thus are easily
identified. These outliers are also treated as ROIs since they are
important to describe some distinctive trajectories. For instance,
plj has no near point to interact with, and it is finally represented
as ROI lz .

The salient feature of synchronization-based clustering is its
dynamic property. During the process of interactions, the value
of each dimension of a given point changes in a non-linear way
driven by the local data structure, and finally the feature vectors
of points in a cluster will become the same. More importantly, the
derived synchronized ROIs can be viewed as new points to form
a new data set. The new data set well preserves the original data
structure. Therefore, the powerful concept of synchronization
supports a natural hierarchical clustering.

4.2. Multi-resolution network modeling with semantic enrichment

It is important to note that with derived ROIs, the new data set
can be further compressed with synchronization-based clustering
at a higher level. Therefore, for our trajectory data, we extend
Sync to multi-resolution data representation, which is called
CascadeSync. The basic idea is quite intuitive. For the first step,
we cluster all trajectory data points with a small interaction range
ϵ, which usually results in a large number of small-size clusters.
Since points in the same cluster have synchronized together,
we can use the synchronized point to characterize the whole
cluster objects. As a result, a new data set including all these
synchronized points can be generated, and cluster again with a
much larger interaction range ϵ. However, for a new data set,
since each point in the new data set characterizes the different
number of points in the previous layer of data, the interaction
model should be reformulated to consider the weight of each
point, which is defined as follows.

pl(t +1) = pl(t)+
1∑

ql∈N
ϵl (p

l) wql
·

∑
ql∈N

ϵl (p
l)

wql sin(q
l(t)−pl(t)), (6)

where the weight wql is the number of points that are represented
by the synchronized point ql on the layer l − 1. And ϵ l is the
interaction range of layer l, which is manually set by the user
according to the application at hand. In the study, we initialize
ϵ to be 0.005× (L+W )/2, and add ϵ by 0.005× (L+W )/2 with
the increase of number of layer l, where L and W are the length
and width of the map.

For illustration, Fig. 3(b) gives a toy example. In fact, Cas-
cadeSync not only supports a hierarchical data representation,
but also speeds up the synchronization process. The reason is
that with the small interaction range, CascadeSync is easier to
converge. Although more clusters are generated, they are viewed
as new objects and can be further clustered efficiently.

Semantic Enrichment. In previous sections, we focus on the
synchronization-based trajectory compression. However, as men-
tioned in the introduction section, the semantic information is an
important property, which needs to be considered for trajectory
compression. In real-world scenarios, the semantic information is
usually embodied by a collection of fixed points or regions on the
map, such as the intersections and turning points on the roadmap,
which are drawn as light blue triangles in Fig. 3.

There is an intuitive way to plug those predefined seman-
tic ROIs in our CascadeSync model. Specifically, we make the
positions of those ROIs be fixed during the interaction process.
Since each point interacts with its neighboring points, and thus
all surrounding GPS points will move to these fixed points to
form semantic ROIs. If there are no fixed points for some GPS
points, near GPS points will synchronize together to form normal
ROIs. After all raw GPS points are clustered into normal ROIs or
semantic ROIs, each trajectory is represented as a new path with
these resulting ROIs. To further explore the statistical information
of trajectories contained in ROIs, we define the hierarchical ROI
network.

Definition 4.4 (Hierarchical ROI Network). Given a trajectory data
set, the ROI network is represented as a multi-layer graph G(V, E)
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Fig. 4. Illustration of hierarchical ROI network, where the size of ROI is
proportional to the point weight. The width and color shade of edges are
proportional to the number of trajectories passing through the two ending ROIs.

with every layer being Gl(V l, E l), where the node set V l contains
all ROIs on the layer l. E l is edge set of layer l. And there is
an edge eluv ∈ E l connecting nodes (ROI lu, ROI

l
v) if there exists

any GPS coordinate pair (Pi, Pj) as a trajectory segment, with Pi
represented by ROI lu and Pj represented by ROI lv on layer l.

We illustrate a hierarchical ROI network in Fig. 4, where the
trajectory data is visualized from fine-grained to rough-grained
level. The ROI network provides a compact representation to
characterize a trajectory. Each trajectory could be expressed as
a temporal sequence of ROIs on a given ROI network. In ad-
dition, from each ROI, all trajectories that passed this region
are recorded. Therefore, a wide range of statistical information,
e.g., visiting time distribution, staying time distribution and mov-
ing direction, can be extracted from the ROI. For instance, we
illustrate a toy example in Fig. 5, in which the raw data and
one layer of the ROI network are shown. In Fig. 5(a), a specific
trajectory T33 is selected, from one layer of ROI network shown

Algorithm 1: Semantic Trajectory Compression via Cascas-
deSync

Input : Trajectory dataset T ; Semantic ROI set ROIs
Output : Hierarchical ROI network;
Parameter: Initial value ϵ0; Incremental change △ϵ; Maximal layer LM

1 P0 = T
⋃

ROIs; ▷ The union of raw GPS points set and semantic ROI set.
2 P0 = Norm (P0); ▷ Normalized each dimension to [0, π/2].
3 layer = 0; ϵ = ϵ0;
4 while layer ≤ LM do
5 Player+1 = Sync(Player ,ROIs, ϵ); ▷ Fig. 3
6 layer = layer + 1; ϵ = ϵ + △ϵ;
7 end
8 regions of interest set: ROI = Player ;
9 ROI network edge set E = ROINetworkConstructor (ROI,T ); ▷ Fig. 4, 5

10 Function Sync(P,ROIs, ϵ):
11 t = 0;
12 while TRUE do
13 foreach point pi(t) ∈ P AND pi(t) /∈ ROIs do
14 Search its ϵ-range neighbors Nϵ (pi(t)) with Eq. (3);
15 foreach neighbors q(t) ∈ Nϵ (pi(t)) do
16 Compute pi(t + 1) with Eq. (4);
17 end
18 end
19 Compute the cluster order parameter r(t) with Eq. (5);
20 if r(t) converges then
21 return {p1(t), · · · , pN (t)};
22 end
23 t = t + 1;
24 end
25 end

in Fig. 5(b), T33 is compressed and represented by four ROIs
⟨ROI1, ROI2, ROI4, ROI5⟩. Besides, the basic statistical information
of ROI2 is shown. The traffic patterns of this region can be eval-
uated from the passing time distribution. Furthermore, some
downstream mining tasks, such as trajectory retrieval and fre-
quent pattern mining, could work on such representation directly.

4.3. Time complexity analysis

The time complexity of CascadeSync is O(L × T × Nl logNl),
T is the time steps in each round and L is number of layers in
CascadeSync. Usually, L is small with L ≤ 20 in practice. Nl is the
number of points, which decreases exponentially over the layer l.
Finally, the pseudocode of our approach is given in Algorithm 1.

Fig. 5. The ROI network in an incomplete roadmap. Here a specific trajectory T33 is selected and compressed to four ROIs: ⟨ROI1, ROI2, ROI4, ROI5⟩. The green dash
line encloses the four ROIs on the ROI network, and the basic statistics of ROI2 is illustrated.
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5. Trajectory stream compression and retrieval

Since trajectory data is constantly generated and collected
in overwhelming speed in the real world, it is unrealistic to
represent and store all trajectories in one ROI network. Here, we
extend our model on the stream setting, which aims to compress
and store the trajectories over time with a simple strategy.

5.1. Trajectory stream compression

The trajectories of human and vehicles are collected continu-
ously. In order to store and analyze the huge amount of trajectory
data, we divide the whole data set into several chunks over
time, e.g., a week or a month per chunk. Fig. 6 illustrates the
ROI networks generated by CascadeSync in three periods. The
partitioning strategy is simple: first, we select an appropriate
window size for time partition, which is dependent on the real
world applications. For each window, we apply CascadeSync to
cluster all GPS points in this time window. For example, the GPS
points of trajectory T1, T2 and part of T3 and T4 are collected and
fed in CascadeSync algorithm to yield a hierarchical ROI network
G1. The rest GPS points of T3 and T4 are generated in the next
period and thus represented by G2 and G3, respectively.

To keep the integrity of the trajectory and support trajectory
visualization, separated ROI networks should be capable of re-
assembling appropriately. To this end, we define two operations,
Merge and Split, on the ROI networks to support the mixture and
split of data.

ROI Networks Aggregation. When the time range for a given
query spans more than one time window, we need to merge all
corresponding ROI networks together. Here we introduce an op-
eration on ROI networks, called Merge, which aims at integrating
two ROI networks into a single ROI network. Fig. 7 illustrates
how it works. For each layer Li, the initial points, i.e., original GPS
points or ROIs generated at layer Li−1, are mixed together from
two sources, which is shown in Fig. 7(a). The ROIs distributed
in a small region (with a radius of ϵ) should be merged into
one ROI, as they are located in the same region. For example,
as the red points and blue points are mixed at layer Li−1, the
representative region ROIA and ROIB should be merged to yield
ROIC at layer Li. Naturally, the operation can be implemented by
applying synchronization-based clustering on the layer, as shown
in Fig. 7(b). After applying the Merge operation on all layers, the
two ROI networks are merged into one ROI network, and this
procedure can be repeated to handle multiple ROI networks.

However, there is an inevitable error introduced in the merg-
ing process. This is the regret term in online learning which
measures the difference between the loss of online model and
the offline model. We will analyze it in the experimental section.

ROI Network Decomposition. Similar to the Merge operation, an
ROI network should be capable of breaking up into several ROI
networks, when the application requires a fine-grained temporal
range. So we introduce another operation: Split on ROI network.
The strategy of splitting an ROI network is relatively simple:
For layer Li, some points (light blue points in 8(a)) need to be
removed from data on existing ROI network. Hence, we remove
them directly and update the indexing of network structure so
that the generated ROI will no longer contain those points (8(b)).
At first glance, the removal of points should result in the change
of the positions of ROIs, but we choose to keep the original
ROI fixed. It is because that any adjustment of positions would
yield a new representative error, besides, the amount of removal
points is relatively small comparing to original data points. And
experiments show the operation Split can keep the representative
error stable.

Algorithm 2: Spatiotemporal Query in Trajectory Stream
Input : Derived ROI networks in all time periods

G = {G1,G2, · · · ,GT };
Query Q = {(P1, △t1), (P2, △t2), · · · , (Pn, △tn)};

Output : Trajectory set Tq;

1 foreach point Pi ∈ Q do
2 Identify the ROI network set Gi;
3 foreach ROI network Gk ∈ Gi do
4 Get the trajectory set T i

k ;
5 end
6 T i

= Union(T i
1, · · · , T

i
K );

7 end
8 Tq = Intersect(T 1, T 2, · · · , T n);

5.2. Trajectory stream retrieval

The basic requirement for the trajectory database is to support
trajectory retrieval effectively so that we are able to conduct the
complex analysis on trajectory data. According to the work of
Deng et al. [56], there are three kinds of relationship in trajectory
queries: (1) Trajectories and points. For example, find all trajec-
tories within 500 m of a gas station between 9:00pm-9:30pm. (2)
Trajectories and regions, e.g., find the region which is passed by
the specific trajectories between 9:00pm-9:30pm. (3) Trajectories
and trajectories, e.g., find travelers who may take a similar path
in the coming 30 min.

Here we demonstrate our model naturally supports the first
two types of query mentioned above, i.e., given at least one
point or region, the trajectories near to the point(s)/region(s) in
specific time could be easily retrieved. Formally, we define the
spatiotemporal query on a trajectory stream as follows.

Definition 5.1 (Spatiotemporal Query). For each time, a spatiotem-
poral query Q = {(P1, △t1), (P2, △t2), . . . , (Pn, △tn)}, which con-
sists of a set of distinct points and their time ranges, is to ask
for the set of trajectories Tq that pass or surround all the points
in query Q during the required period. Pi = (xi, yi) is a two-
dimensional data point or the center of a given region, and
△ti = (tsi , t

e
i ) denotes the starting time tsi and ending time tei for

trajectory passing nearby the point Pi, respectively.

Assume a set of ROI networks G = {G1,G2, . . . ,GT } have been
generated for all continuously time windows. The spatiotemporal
query can be readily done by applying the following three steps:

Step 1: For each point Pi ∈ Q, identify the ROI network set Gi
that contains the time range △ti = (tsi , t

e
i ) for the query.

Step 2: For each network G ∈ Gi generated in Step 1, extract
all trajectories that pass through the point Pi, which is
denoted as T i

k . Therefore, take the union operation to get
all trajectories on all networks as T i

= Union(T i
1, . . . , T

i
K ).

Step 3: To obtain the final results under all query conditions
in Q, perform the interaction operation on the retrieval
results from Step 2, i.e., Tq = Intersect(T 1, T 2, . . . , T n).

The time complexity for the query is O(nT ), where n is the
number of points/regions in one query, and T is the number of
trajectories. With the hash technique, the process can be acceler-
ated further. The pseudocode is shown in Algorithm 2.
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Fig. 6. The maintenance of ROI networks in trajectory streams.

Fig. 7. The merge of ROIs on two hierarchical ROI networks. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 8. ROI split on a hierarchical ROI network. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

6. Experiment

In this section, we perform experiments to evaluate the per-
formance of our algorithm CascadeSync. To reveal the robust

property of CascadeSync in different semantic conditions, we
design experiments on data sets with and without predefined
semantic ROIs, respectively. We also conduct experiments to
prove the desirable properties of CascadeSync and also compare
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Fig. 9. Trajectory compression on 100 synthetic trajectories. (a) Raw data set. (b) The resulting one-layer ROI network (ϵ = 5 m) with 30 semantic points. (c) The
resulting one-layer ROI network (ϵ = 5 m) without 30 semantic points. Here the size of ROI is proportional to the point weight. The width and color shade of edges
are proportional to the number of trajectories passing through the two ending ROIs.

the performance of our algorithm with some baseline algorithms.
Moreover, the experiments of the spatiotemporal query are also
given to show the effectiveness of our model in the trajectory
retrieval task.

6.1. Experimental setup

6.1.1. Synthetic data
To prove the concept, we generate random trajectories in a

rectangle of 100 × 100 m with the random starting point and
ending point, using a probabilistic path planning algorithm [57],
which is implemented in MATLAB 2016b as robotics.PRM class.
Moreover, we randomly select 30 points as semantic ROIs. Fig. 9(a)
shows the generated data set with 100 random trajectories,
where the triangles with light blue are selected as semantic ROIs.

6.1.2. Real-world data
We evaluate our proposed method on four trajectory data sets:

Geolife,1 T-drive,2 Atlantic Hurricanes3 and Migration of Argen-
tine Barn Swallows.4 Geolife is a trajectory data set collected
from daily human life by Zheng et al. [58–60]. T-drive contains
trajectories generated by urban taxi, which is collected by Yuan
et al. [61,62]. Both Geolife and T-Drive are trajectory data set in
Beijing, and the substantial distinction between them lies in the
different sampling rates. About 91 percent of trajectories from
Geolife are logged in a dense representation, e.g., every 1–5 s
or every 5–10 m per point, while trajectories from T-Drive are
sampled in a very low frequency, like 2-5 min per point. Atlantic
Hurricanes, collected by NHC (National Hurricane Center), records
the track of Atlantic hurricane in 1851–2016. And Argentine Barn
Swallows records the tracks of migrating birds in South America.
All data sets contain the sampling GPS points described by the
latitude, longitude and time stamp. We summarize the statistics
of the four data sets in Table 2.

6.1.3. Semantic enrichment
To generate the ground truth of semantic information, we

downloaded the urban roadmap of Beijing from OpenStreetMap.5
The roadmap is expressed by nodes and edges. We randomly
select 1000 intersections, i.e., the nodes with degree greater than

1 https://www.microsoft.com/en-us/research/publication/geolife-gps-
trajectory-dataset-user-guide/.
2 https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-

data-sample/.
3 http://www.nhc.noaa.gov/data/hurdat/.
4 https://www.datarepository.movebank.org/handle/10255/move.655.
5 https://www.openstreetmap.org.

Fig. 10. Hierarchical ROI network generated from raw trajectories on Geolife
data. Here ϵ is set as (200 m, 500 m, 1000 m, 3000 m) from bottom layer to
top layer, respectively.

two, as the fixed semantic ROIs on the T-Drive and Geolife data
set. Here we do not introduce semantic ROI on Hurricane and
Migration data since it is meaningless to define the semantic
point or region on the overland area.

6.1.4. Evaluation metrics
Generally, traditional trajectory compression algorithms are

evaluated by the compression ratio, which is defined as follows.

Compression ratio = 1 −

∑
i

|T ′

i |

|Ti|
× 100%, (7)

where each Ti ∈ T ′ is one trajectory of raw trajectory set T ′, and
T ′

i is its compressed representation. |Ti| denotes the number of
points or regions of the trajectory Ti. However, the performance of
our model cannot be fully evaluated by this metric since there is
a trade-off between compression ratio and semantic information
preservation. To measure the semantic information preservation,
we also compute the representative error η, which is defined as
the distance between a true point p and its compressed point
p′. The mean value and standard deviation of all points can be
recorded. Besides, we also compare the runtime of all algorithms
on the four real-world data sets.

https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
http://www.nhc.noaa.gov/data/hurdat/
https://www.datarepository.movebank.org/handle/10255/move.655
https://www.openstreetmap.org
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Table 2
Statistics of four well-known real-world data sets.
Data set #Point #Trajectory [Longitude, Latitude range] [Width × Length] (m)

Geolife 24,876,978 18,670 [116.194, 116.553, 39.751, 40.033] [31, 024 × 31, 368]
T-Drive 6,969,481 8768 [116.194, 116.553, 39.751, 40.033] [31, 024 × 31, 368]
Hurricane 49,682 1830 [−113.708, 44.713, 5.221, 74.725] [7.728 × 10.860] × 106

Migration 4544 9 [−69.75, −33.80, −39.61, 16.80] [6.272 × 3.915] × 106

6.1.5. The selection of comparison methods
The performance of semantic trajectory compression methods

is not convenient to compare directly, because they are proposed
to enrich semantic information to the new representations of
trajectory data. To demonstrate the effectiveness and efficiency
of CascadeSync, we use five well-known trajectory compression
algorithms as baselines.

Douglas–Peucker [1]: is the most notable line simplification
algorithm, which uses a greedy strategy to examine all points be-
tween the first and last point until the maximum spatial deviation
is within the error bound ζ . The worst-case runtime is O(n2).

Douglas–Peucker-SED [17,18]: is a transformation of original
Douglas–Peucker algorithm. It takes full consideration of spa-
tiotemporal characteristics by replacing perpendicular distance
with Synchronized Euclidean Distance (SED), which measures
the distance between two points at identical time stamps. The
worst-case runtime complexity is also O(n2).

Dead Reckoning [2,21]: is an online compression model, which
estimates every successor position through the current position
and velocity. By computing the deviation between the estimated
position and the true position, the point can be left off from
the compressed trajectory if the deviation is less than the error
bound. The time complexity of Dead Reckoning is O(n).

Squish [3,21]: compresses each trajectory by removing points
of the lowest priority from the priority queue until it achieves the
target compression ratio or the error bound. The time complexity
of Squish is O(log n).

Traclus-MDL [19]: is a compression technique that can only
achieve constant compression ratio. It uses minimum description
length (MDL) [63] to jointly model the complexity and repre-
sentative capacity of compressed trajectories so as to derive the
optimal characteristic points as compression results. The time
complexity of this model is O(n).

We compare the compression ratio with these baseline algo-
rithms, and the compression time of all models is listed. Further-
more, the evaluation of enriched semantic information in the new
trajectory representations of CascadeSync is further given.

6.2. Proof of concepts

6.2.1. Visualization of ROI network
For illustration, we first visualize the ROI networks generated

on different data sets. For the sake of conciseness, we only vi-
sualize the multi-layer ROI network of Geolife data in Figs. 10
and 11, which are the results with and without using 1000 fixed
intersections in CascadeSync, respectively. Besides, one layer on
the hierarchical ROI network of all data sets is illustrated in Figs. 9
and 15. From those figures, we can see our model is intuitive and
effective.

6.2.2. Representative error analysis
Unlike traditional methods that compress each trajectory in-

dependently, our synchronization-based clustering model Cas-
cadeSync compresses trajectory globally, and the representative
error can be bound by ζ with high probability. Here we start
with the experiment to explore how well the trajectories can be
represented by ROIs, as well as the relationship between the error
bound ζ and the interaction range ϵ.

Fig. 11. Hierarchical ROI network generated from raw trajectories with addi-
tional 1000 road intersections (which are represented by blue triangles) on
Geolife data. Here ϵ is set as (200 m, 500 m, 1000 m, 3000 m) from bottom
layer to top layer, respectively.

Without loss of generality, we conduct this experiment on
Geolife data set. By applying CascadeSync model, 24,876,978
GPS points are represented as ROIs from fine-grained to coarse-
grained resolution. For illustration, the interaction range ϵ varies
evenly from 200 m to 2000 m for ten times, which is around
6/1000 to 60/1000 of the length of the map. The average rep-
resentative error of all points can be calculated at different levels
by increasing the interaction range of each layer in CascadeSync.
The results are illustrated as box plot in Fig. 12. The horizontal
red line in box is the median value, the upper boundary of blue
box is the third quartile points, the upper end of black dash line
indicates the maximal value, and the red line beyond the maximal
value are considered as outliers.

CascadeSync without Semantic ROIs. As for the experi-
ment without predefined semantic ROIs, the result is plotted in
Fig. 12(a). We can observe that the maximum is proportional to
the interaction range ϵ, and is approximately equal to ϵ. Actually,
there are 97.64% points whose representative errors are smaller
than ϵ. In other words, if we set the error bound ζ = ϵ, the result
of CascadeSync without semantic ROIs would be bounded by ζ
with probability greater than 0.9764.

CascadeSync with Semantic ROIs. By introducing intersec-
tions as fixed semantic ROIs, the result is plotted in Fig. 12(b).
Different from the previous one, the representative error in-
creases when the interaction range ϵ increases gradually until it
reaches 800 m, and then it remains constant with the increase
of ϵ. In this experiment, if we set error bound ζ = ϵ, the result
would be bounded by ζ , with probability greater than 0.9971.

Until now, we have shown that our method CascadeSync is
bounded by the error bound ζ = ϵ, with very high proba-
bilities. Moreover, by introducing predefined semantic ROIs, the
representative error could be further reduced. The reason is quite
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Fig. 12. Relationship between the representative error and the interaction range. The horizontal red line in the box is the median value, the upper boundary of
blue box is the third quartile points, the upper end of black dash line indicates the maximal value, and the red line beyond the maximal value is considered as the
outliers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Average representative error generated by offline/online compression.

intuitive: more semantic information will lead to more dense
representative ROIs. However, the compression ratio will also
increase, and we will show this in the next experiment.

6.2.3. ROI Network online merge/split analysis
As the amount of trajectory grows, it is impractical to repre-

sent all trajectory in a single ROI network. We have developed a
window-based method to break the trajectory data depending on
data recency. However, if there is a request to present or visualize
data with a given specific time period, which the existing window
size fails to satisfy, the operation Merge/Split would be applied.
The online operations on the ROI networks reduce the runtime
which is needed by constructing an ROI network from scratch,
although the additional error will be introduced. Now we con-
duct experiments to evaluate the error introduced by the online
Merge/Split operation(s).

200 random trajectories and 30 fixed semantic ROI are gen-
erated with aforementioned synthetic data generation method.
100 trajectories from the 200 trajectories are randomly selected
as bases. We design five schemes to generate an ROI network by
applying CascadeSync model: (1) ROI network is generated by
the 100 bases in one attempt (the offline version); (2) merge two
ROI networks which are generated by first half and second half of
the bases individually (i.e., 100 trajectories using (50 + 50) merge
operation); (3) merge three ROI networks that are generated from
three parts of bases (i.e., 100 trajectories using (34 + 33 + 33)

merge operation); (4) split an ROI network that is generated from
50 non-base trajectories from an ROI network and make the rest
ROI network contains exactly the 100 base trajectories (i.e., 100
trajectories using (150 - 50) split operation); (5) split two ROI
networks and make the result ROI network contains exactly the
100 base trajectories (i.e., 100 trajectories using (166 - 33 - 33)
split operations).

Fig. 13 illustrates the representative errors with the five
schemes. From the figure, we can observe that the operation
Split always remains the representative error as the same level
as the offline version, which means Split would not introduce
additional error and thus be reliable for various applications.
However, the operation Merge will introduce additional error as
the interaction range ϵ exceeds 1.5 m (15/1000 of the length of
the map), and it grows with the increase of ϵ. Another observation
is the more times the Merge conducted, the larger the additional
error introduced since more trajectories are summarized at a
higher level. Therefore, the Merge operation is only suitable for
the applications which are not sensitive to the representative
error such as visualization.

Furthermore, to get a fine-grained view of how Merge and Split
affect the representative error. We merge the ROI network with
50 trajectories by adding one single trajectory per time, until all
100 base trajectories are added in an existing ROI network. Simi-
larly, we split the ROI network with 150 trajectories by removing
one single trajectory per time until the existing ROI network
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Fig. 14. The relationship between representative error and the number of
merged/split trajectories on one layer of ROI network with the interaction range
ϵ = 2.5 m. The mean values and area bounded by one standard deviation are
shown.

Table 3
Runtime records on the real-world data sets. The result is measured in second
(s).

DP DP-SED DR Squish Traclus-MDL CascadeSync

Geolife 6100.42 36621.08 14525.53 14712.10 6357.91 15.38
Tdrive 2288.57 35422.91 5101.41 5289.05 2344.51 7.51
Hurricane 16.46 49.80 30.98 33.54 13.78 0.42
Migration 1.79 12.09 4.40 4.44 2.28 0.10

contains exactly the 100 base trajectories. The mean value and
area bounded by one standard deviation of error curve on the
layer with the interaction range ϵ = 2.5 m are drawn in Fig. 14.
From the result, we can see that the Split operation can keep the
representative error on a low level, and Merge operation also will
not introduce the large error as in Fig. 13. This is because the
trajectories are gradually added into the existing ROI network, it
can maintain the correct representation. This suggests our model
can be extended to compress and represent trajectory data on the
fly.

6.3. Evaluation of compression

In this section, we compare the compression ratio with base-
line algorithms to show the representative capability of Cas-
cadeSync. To compare them fairly, all comparing algorithms are

bounded with the same error bound ζ . We set ζ = ϵ in Cas-
cadeSync, since we have illustrated that the results are convinc-
ing.

As aforementioned, CascadeSync is employed twice on Geolife
and T-Drive data, where the difference is whether the predefined
intersections (i.e., semantic information) is used or not. By vary-
ing the error bound ζ in a reasonable range, we calculate the
compression ratios of four data sets and plot the results in Fig. 16.
Here, only some results are visualized in Fig. 15.

We find that the scales of compression ratio are different on
these four data sets. For example, Geolife and T-drive both are
trajectories in Beijing. However, the sampling rate of Geolife is
hundreds of times larger than that of T-drive. Therefore, there is
much more redundancy contained in Geolife, which results in a
very high compression ratio. The ROI networks in Fig. 15(a)–(d)
also show the differences. The ROI network of T-drive is more
complicated than Geolife, which indicates there are many gaps
on trajectories.

Nonetheless, the compression ratios of the four models are
comparable in each data set. Douglas–Peucker is superior to other
models, and our CascadeSync in free space inclines to exceed
other models with the increase of the error bound. It is important
to note that Traclu-MDL presents a flat line. Since the model
does not take the error bound as a parameter, it cannot control
the compression ratio. Meanwhile, CascadeSync with semantic
information is not good at compression ratio, which is due to
the semantic ROIs that are not allowed to move or reduce on the
map. This phenomenon can also be revealed by ROI networks in
Fig. 15(a–d): by increasing the error bound ζ , there exist fewer
normal ROIs, and thus the road intersections gradually become
the dominant ROIs on the map.

The experiment has shown the excellent compression ratio
and representative capability of CascadeSync. Now we show the
most salient feature of CascadeSync by comparing the runtime
with other algorithms. The runtime of six algorithms on four
real-world data is reported. Each algorithm runs ten times on
each data set, and the average runtime is reported in Table 3.
Note that the runtime in Table 3 and the compression ratio in
Fig. 16 are measured simultaneously in the same experimental
setting. CascadeSync is thousands of times faster than the other
five methods. This is because the traditional models compress
trajectory one by one, thus the runtime is proportional to the
points in data set. Our model works globally, so the number
of points would reduce exponentially so that the compression
process would be accelerated.

6.4. Spatiotemporal trajectory query

The derived ROI network is a compact representation of tra-
jectory data. It well integrates both global information and special

Table 4
Spatiotemporal queries on Geolife data.
Spatiotemporal queries Number of trajectories

No. Location Time range ϵ = 500 m ϵ = 1000 m ϵ = 3000 m

1 Peking University, 2008-11-28, 2009-01-07 3 8 51Jinrong Street.

2 Wangfujing, 2009-02-14, 2009-03-20 4 18 44Beijing West Railway Station.

3
Tiananmen Square,

2009-01-27, 2009-02-25 0 2 9Beijing Railway Station,
National Stadium.

4
Zhongguancun,

2008-06-18, 2008-06-22 1 2 12Guangximen,
Jianguomen.

5
Tiantan Park,

2008-04-02, 2009-11-23 15 139 578Forbidden City,
Beihai Park.
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Fig. 15. The ROI networks on different data sets with different error bounds. In each subfigure, the left-hand side ROI network is generated without semantic ROIs,
and the right-hand side ROI network is generated with 1000 random selected intersections. The size of ROI is proportional to the node weight (i.e., the number of
raw GPS coordinates each ROI represented). The edge width and color shade are proportional to the transportation flow of two ending ROIs.

semantic information, which facilitates the downstream applica-
tions. In this section, we take the spatiotemporal retrieval task as
an example. Given a set of landmarks or regions in a city as well
as the time periods, we retrieve the trajectories passing all those
regions during the corresponding time periods. Since our multi-
resolution ROI network has recorded the passing trajectories with
visiting time, trajectories can be easily retrieved by applying
Algorithm 2 on the existing ROI networks.

For simplicity, we only illustrate the results of queries on
Geolife data (see Table 4). Since most trajectories are located
around Microsoft Research Asia (MSRA) and campuses of some
universities, the data is sparse with respect to the whole Beijing
city. For illustration, here we only consider three ranges (500 m,
1000 m and 3000 m, respectively), and give the first retrieval
result from 2008-11-28 to 2009-01-07 in Fig. 17. There are only 3
trajectories passing the campus of Peking University and Jinrong
Street when the ϵ-range is set as 500 m. The number of resulting
trajectories grows, intuitively, by increasing the ϵ-range.

7. Conclusion

In this paper, we propose a synchronization-based semantic
trajectory compression algorithm CascadeSync, by representing a

given trajectory data set as a multi-resolution ROI network. Build-
ing upon the concept of synchronization, CascadeSync allows
yielding multi-resolution trajectory abstractions (i.e., hierarchical
ROI network) with and without available semantic information.
More importantly, the abstracted trajectory representation well
preserves the global trajectory information, and the semantic
can be well integrated. For trajectory streams, we develop a
simple yet efficient window-based method to represent trajec-
tories on multiple ROI networks according to data recency. The
experiments on both synthetic data and four real-world data sets
have demonstrated its effectiveness and efficiency, and show its
superiority to other five baseline methods.

Based on the appropriate representations, trajectory data can
be further exploited to mine the underlying human mobility
patterns [13,14]. The possible directions are: (1) to construct
comprehensive user profiles and understand human behavior
by modeling his/her traveling history. Meanwhile, if the social
network data and the behavior data (such as phone contacting
records, trading records or rating data) are available, the evo-
lution of friendships can be investigated based on their daily
co-traveling records. (2) Since the POIs of the city have been
modeled in our trajectory representation as a network, the re-
lationship between nearby POIs can be explored. On the one
hand, the similarity can be redefined based on user’s visiting
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Fig. 16. Compression ratio with varying representative error bound.

Fig. 17. Retrieval result of spatiotemporal trajectory query with different searching ranges. Two locations are selected, which are Peking University and Jinrong Street.
The time range is from 2008-11-28 to 2009-01-07. The radius of circle indicates the range ϵ.

records instead of geographic distance. On the other hand, the
relationship among nearby POIs can be researched. For example,
is it a symbiosis or competition between a tea shop and the coffee
shop next to it? (3) It helps understand the mechanism of POI
recommender systems. Actually, recommendations in location-
based social network are prevailing in recent research works [64].
However, most works only focus on pursuing the prediction per-
formance, ignoring the interpretation of models [65]. By exploring
the user behavior and social relationships in our hierarchical

ROI network, CascadeSync allows enhancing the explainability of
recommendation results.
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